Підходи та напрями

Підходи до розуміння проблеми

Результат пошуку зображень за запитом "штучний інтелект"Єдиної відповіді на питання, чим опікується штучний інтелект (ШІ), не існує. Майже кожен автор, який пише книгу про штучний інтелект, відштовхується від якогось визначення, та розглядає в його світлі досягнення цієї науки. Зазвичай ці визначення зводяться до наступних:
  • Штучний інтелект вивчає методи розв'язання завдань, які потребують людського розуміння. Отже, мова іде про те, щоби навчити ШІ розв'язувати тести інтелекту. Це передбачає розвиток способів розв'язання задач за аналогією, методів дедукції та індукції, накопичення базових знань і вміння їх використовувати.

  • Штучний інтелект вивчає методи розв'язання задач, для яких не існує способів розв'язання або вони не коректні (через обмеження в часі, пам'яті тощо). Завдяки такому визначенню інтелектуальні алгоритми часто використовуються для розв'язання NP-повних задач, наприклад, задачі комівояжера.

  • Штучний інтелект займається моделюванням людської вищої нервової діяльності.

  • Штучний інтелект — це системи, які можуть оперувати зі знаннями, а найголовніше — навчатися. В першу чергу мова ведеться про те, щоби визнати клас експертних систем (назва походить від того, що вони спроможні замінити «на посту» людей-експертів) інтелектуальними системами.

  • Останній підхід, що почав розвиватися з 1990-х років, називається агентно-орієнтованим підходом. Цей підхід зосереджує увагу на тих методах і алгоритмах, які допоможуть інтелектуальному агенту виживати в довкіллі під час виконання свого завдання. Тому тут значно краще вивчаються алгоритми пошуку і прийняття рішення.

Підходи до вивчення

Існують різні методи створення систем штучного інтелекту. У наш час можна виділити 4 досить різних методи:

    Результат пошуку зображень за запитом "штучний інтелект"
  1. Логічний підхід. Основою для вивчення логічного підходу слугує алгебра логіки. Кожен програміст знайомий з нею з того часу, коли він вивчав оператор IF. Свого подальшого розвитку алгебра логіки отримала у вигляді числення предикатів — в якому вона розширена за рахунок введення предметних символів, відношень між ними. Крім цього, кожна така машина має блок генерації цілі, і система виводу намагається довести дану ціль як теорему. Якщо ціль досягнута, то послідовність використаних правил дозволить отримати ланцюжок дій, необхідних для реалізації поставленої цілі (таку систему ще називають експертною системою). Потужність такої системи визначається можливостями генератора цілей і машинного доведення теорем. Для досягнення кращої виразності логічний підхід використовує новий напрям, його назва — нечітка логіка. Головною відмінністю цього напряму є те, що істинність вислову може приймати окрім значень «так»/«ні» (1/0) ще й проміжні значення — «не знаю» (0,5), «пацієнт швидше живий, ніж мертвий» (0,75), «пацієнт швидше мертвий, ніж живий» (0,25). Такий підхід подібніший до мислення людини, оскільки вона рідко відповідає «так» або «ні».                                                              
  2. Під структурним підходом ми розуміємо спроби побудови ШІ шляхом моделювання структури людського мозку. Однією з перших таких спроб був перцептрон Френка Розенблатта. Головною моделюючою структурною одиницею в перцептронах (як і в більшості інших варіантах моделювання мозку) є нейрон. Пізніше виникли й інші моделі, відоміші під назвою нейронні мережі (НМ) і їхні реалізації — нейрокомп'ютери. Ці моделі відрізняються за будовою окремих нейронів, за топологією зв'язків між ними і алгоритмами навчання. Серед найвідоміших на початку 2000-х років варіантів НМ можна назвати НМ зі зворотнім розповсюдженням помилки, сітки Кохонена, сітки Хопфілда, стохастичні нейрони сітки. У ширшому розумінні цей підхід відомий як Конективізм. Відмінності між логічним та структурним підходом не стільки принципові, як це здається на перший погляд. Алгоритми спрощення і вербалізації нейронних мереж перетворюють моделі структурного підходу на явні логічні моделі. З іншого боку, ще 1943 року Маккалок і Піттс показали, що нейронна сітка може реалізувати будь-яку функцію алгебри логіки.                                                             
  3. Еволюційний підхід. Під час побудови системи ШІ за даним методом основну увагу зосереджують на побудові початкової моделі і правилах, за якими вона може змінюватися (еволюціонувати). Причому модель може бути створено за найрізноманітнішими методами, це може бути і НМ, і набір логічних правил, і будь-яка інша модель. Після цього ми вмикаємо комп'ютер і він на основі перевірки моделей відбирає найкращі з них, і за цими моделями за найрізноманітнішими правилами генеруються нові моделі. Серед еволюційних алгоритмів класичним вважається генетичний алгоритм.                                                                             
  4. Імітаційний підхід. Цей підхід є класичним для кібернетики з одним із її базових понять чорний ящик. Об'єкт, поведінка якого імітується, якраз і являє собою «чорний ящик». Для нас не важливо, які моделі у нього всередині і як він діє, головне, щоби наша модель в аналогічних ситуаціях поводила себе без змін. Таким чином тут моделюється інша властивість людини — здатність копіювати те, що роблять інші, без поділу на елементарні операції і формального опису дій. Часто ця властивість економить багато часу об'єктові, особливо на початку його життя.
Пов’язане зображення
У рамках гібридних інтелектуальних систем намагаються об'єднати ці напрямки. Експертні правила висновків, можуть генеруватися нейронними мережами, а побіжні правила отримують за допомогою статистичного вивчення. Багатообіцяльний новий підхід, який ще називають підсиленням інтелекту, розглядає досягнення ШІ у процесі еволюційної розробки, як поточний ефект підсилення людського інтелекту технологіями.


Матеріал : https://uk.wikipedia.org/wiki/Штучний_інтелект

2 коментарі:

  1. Чудовий блог , Дуже цікава інформація, багато пізнавального

    ВідповістиВидалити
  2. Дякуємо за коментар, слідкуйте за новинами про штучний інтелект.

    ВідповістиВидалити